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ABSTRACT

This is a two-part report on solar electric propulsion (SEP) perfor-

mance sensitivity analysis. The first part describes the preliminary analy-

sis of the SEP thrust system performance for an Encke rendezvous mission.

A detailed description of thrust subsystem hardware tolerances on mission

performance is included together with nominal spacecraft parameters based

on these tolerances.

The second part of this report describes the method of analysis and

graphical techniques used in generating the data for Part 1. Included is a

description of both the trajectory program used and the additional software

developed for this analysis. Part 2 also includes a comprehensive descrip-

tion of the use of the graphical techniques employed in this performance

analysis.
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PART 1. HARDWARE TOLERANCES AND TRADEOFFS

I. INTRODUCTION

A. Hardware Description

A low-thrust trajectory is a radical departure from the traditional

ballistic trajectory in propulsion system operations. The SEP hardware

will be in operation for months rather than minutes, and trajectory energy

is imparted in continuous fashion over a significant time period. Achieve-

ment of the desired final state vector, however, is still dependent on the

ability to predict and control the hardware performance over the increased

operation time.

Because the propellant is expended on an atomic scale, control must

be exercised in an indirect manner. For instance, because no direct mea-

surement of mass flow rate is available, the flow rate must be controlled

from some a priori calibration. Present control schemes utilize the rela-

tionship between the discharge power and the mass utilization efficiency, as

indicated by the ion beam current, to regulate propellant flow. Calibrations

are made for the individual thrusters, and these calibrations are assumed to

be accurate in flight. The difficulty with this scheme is in the sensitivity of

the calibration to a number of thruster parameters, including thruster geom-

etry, magnetic field strength and shape, division of flow between main and

cathode vaporizers, etc. These calibrations will also vary in time as a

function of component aging, line and load variations, and subsystem random

perturbations.

The effective specific impulse Is and overall efficiency 1TSS of a SEP

thrust subsystem are subject not only to calibration uncertainties but to

variations with input power and time. The effects of these uncertainties and

variations on the trajectory must be understood and the knowledge used to

set hardware limits which ensure mission success. These limits must be

the development standards for thrust subsystem hardware.

JPL Technical Memorandum 33-611



The I and qTSS are related to thrust subsystem parameters as

follows:

N
1 2ei

Is g i (1 ) VB cos e. cos ao cos Pii (1)
i=l

N (1.i 2. VB B.

TSS N Ic. TPC. / +2 BTSS ij= 1 J (]1 2i P T H i T (2)

-2 2 2X cos . cos ?. cosi1 i

The summations are carried out over each operating thruster i and each

power conditioner j. The various terms are defined as follows:

F = thrust level delivered by the subsystem, N

m = propellant mass flowrate, kg/s

g = 9.78 m/s 2

e = electronic charge = 1. 6 X 10 - 19

M = mass of the propellant atom = 3. 34 X 10 - 2 5 kg (mercury)

Tll = fraction of rix exiting as singly ionized mercury atoms

12 = fraction of rh exiting as doubly ionized mercury atoms

VB = net potential through which ions are accelerated

I B  ion current in the exhaust beam = ( 1 + 2 12 em

P = power available to the thrust subsystem for conversion to

thrust

1c = cabling efficiency

,PC = power conditioner efficiency

N = number of operating thrusters

P PPTH power available to an individual thruster = c iPC

2 JPL Technical Memorandum 33-611



cos 6 = beam divergence factor

a = gimbal angle

p= thrust vector misalignment angle

S= factor for thrust recovery from charge exchange, deposition,

etc.

In the ideal case, each of these parameters would be held rigidly con-

stant with the exception of P, PTH' fr and I B , and the latter three would

vary in a known and predictable manner with P. In practice, none of these

parameters are constant.

Through Eqs. (1) and (2) the individual parameter uncertainties

are combined. The combined parameters, Is and qTSS, directly enter the

equations of motion and characterize the subsystem for trajectory perform-

ance. Thus, examination of the effects of variances in these combined

parameters on the trajectory and a subsequent setting of acceptable variance

limits are the first step in defining specifications for the individual subsys-

tem parameters.

B. Mission Interfaces

The magnitude of the instantaneous thrust acceleration supplied by the

SEP system is related to the parameters Is and qTSS by

2 TTSS P

a (3)
mlI g

where m is the instantaneous mass being accelerated. The acceleration

couples the system hardware parameters to the trajectory performance

through the equation of motion,

r TSS P(r(4)
r+K - a = u- 3 - ml g -

r sp

where r is the position vector, K represents the gravitational constant, and

u is the unit vector of the applied acceleration; P(r) gives the- available

power from the solar arrays as a function of position.

JPL Technical Memorandum 33-611 3



A successful trajectory has three important constituents: (1) reaching

the desired position and velocity, (2) with the required amount of hardware,

and (3) within a specified interval of time. Prediction of success is achieved

when the equation of motion has been integrated over the trajectory to reach

the desired final position and velocity. A determination of mass is implied

but it is an additional unknown in Eq. (4). The relationship for the mass

flow rate in terms of the system parameters is obtained by

2 TSSP(r)
= (5)

2 2
Is g

Equations (4) and (5) thus allow the study of trajectory sensitivity to the com-

bined hardware parameters Is and TSS'

II. SUMMARY OF RESULTS

A 1261-kg spacecraft with 20 kW of installed power at 1 AU and 16 kW

delivered to the thrust subsystem was considered for a 950-day Encke

rendezvous mission launched in 1978 and arriving at Encke in 1980. The

thrust subsystem nominal Is was 3000 s and the efficiency was 65%. For

this case, the hardware constraints were a minimum delivered I of 2910 s
s

and a minimum efficiency of 61. 5%. To provide for these tolerances, the

propellant reserve would have to be 56 kg.

The nominal subsystem efficiency was based on the assumption that

the parameters ql' q2 , cos e, cos a, cos P, and 5 in Eqs. (1) and (2) have

values of I = 0. 9, 12 = 0, cos 8 = cos a = cos p = 1 = 1. As these param-

eters are varied, both specific impulse and efficiency vary. Variations of

e and 12 were specifically examined to determine limits caused by the trajec-

tory. The results indicated that only small variations in these parameters

could be tolerated for fixed flight time trajectories. For example, for =

5 deg, the maximum allowable value of r2 is about 0. 035.

The study also showed that constraints on the hardware performance

could be relaxed by the addition of more power. Increasing the power level

of the thrust subsystem by 1 kW, for example, drops the minimum acceptable

efficiency at 3000 s to 60. 2%, and at 2900 s to 58. 6%. Thus, the power
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level significantly influences hardware constraints. Since power, however,

is a major cost item, there could be a strong motivation to hold to the lowest

permissible power level. To do this requires (1) a good knowledge of the

actual performance of the thrust subsystem at the time the power level is

selected, and (2) tight constraints thereafter to meet that performance.

III. CONCLUSIONS

The major conclusions reached in the study are:

(1) Uncertainties in achievable thrust-subsystem performance must

be considered in selecting both the power level of the spacecraft

and the ion-beam voltage.

(2) Any reasonable variance in the thrust subsystem performance

can be accommodated by increasing the power level.

(3) Once the power level and beam voltage have been selected, hard

limits are set on thrust subsystem performance. Violation of

these limits will make the mission unattainable with the original

constraint of fixed flight time.

(4) On the basis of the above, an accurate knowledge of true subsys-

tem performance is essential prior to the final selection of a

design power level and beam voltage; otherwise, the final

selection of the power level must be based on worst-case

assumptions of thrust subsystem performance.

IV. APPROACH

A. Study Guidelines

The equations of motion are subject to the hardware controls available

in the thrust acceleration term. In addition to the combined subsystem

parameters under investigation Is and 1lTSS' the controls include the amount

of time the system is operated, the initial mass which must be accelerated,

and the time history of the thrust pointing vector u. To perform a detailed

or total study of trajectory sensitivity to the hardware parameters, variances

in the additional controls should be included. Each control should be

JPL Technical Memorandum 33-611 5



optimized in the sense that histories (e. g., thrust-coast times and pointing

vector) which ensure a successful trajectory but which, at the same time,

place the least restriction on the thrust subsystem operating specifications,

would be selected. The objective should be to determine the set of paths

over a desired launch opportunity which exhibit these features:

(1) A relatively low amount of thrust time per thruster, thereby

increasing reliability through a reduction of hardware opera-

tion time.

(2) Placement of coasts, which could be used as thrust periods to

increase trajectory tolerance to substandard hardware

performance.

(3) A thrust pointing history minimizing the number of vehicle

inertial attitude changes.

(4) Trajectory success over a wide range of Is and -TSS'

The above features are parametric constraints in the mathematical

formulation to determine these paths. Because the equations of motion are

nonlinear and because of the possible discontinuous nature of controls, simu-

lation and study of the constraints are difficult and time-consuming, even on

the fastest computers. Bounding the controls significantly increases the

complexity and overconstrains the problem. Current trajectory analysis

programs have therefore been formulated as optimizers of the final mass

with freedom from constraints, which allows adequate performance analysis

with increased computational speed, while keeping analyses costs relatively

low. As a result, only limited capability exists for any detailed simulation

of desired trajectory and spacecraft constraints. For these reasons, the

results of this analysis study are classed as preliminary in the sense that

they apply only to the simplified model used in this study.

The study guideline enforced by the analysis tools and the available

study time was to determine the set of paths exhibiting feature (4) under the

constraint of feature (1). Thus, trajectories were required to have coast

phases, but accurate quantitative thrust times were not determined. Further,

it was not feasible to examine the effects of thrust-period placement or con-

strained thrust angles on the tolerances for the collective parameters Is and

'qTSS' Note that the omission of features (2) and (3) leaves the probability

JPL Technical Memorandum 33-611



of possible future changes in the acceptable hardware performance limits.

The importance of early tolerance specifications for hardware development

raises the priority for securing fast, accurate, flexible, and inexpensive

hardware simulation programs to alleviate the guideline restrictions of this

study.

B. Trajectory Analysis

A large number of trajectories displaying the effects of hardware

parameter changes must be studied to determine how much variation the

trajectory can tolerate without jeopardizing mission success. The basic

data can then be analyzed with selected mission success standards, and the

boundaries for the hardware parameters can then be determined. A recently

developed optimization program (Ref. 1), which features fast trajectory

computations through approximation techniques, was employed to perform a

sensitivity analysis of a 1980 Encke rendezvous mission. Trajectories were

determined for a range of launch dates consistent with this mission opportu-

nity. Because of the large number of interacting hardware and mission

parameters, the initial approach was to reduce the total number of param-

eters to be considered in detail. A range of launch energies was selected.

All masses were normalized and trajectories generated for a spectrum of

launch energies. Parameters were mission time and I . The initial accel-

eration a0 for each path was examined as a function of the launch-energy

spectrum, as shown in Fig. 1. Initial acceleration, in a heuristic sense, is

indicative of the amount of energy to be supplied by the thrust subsystem.

As launch speed increases, the required initial acceleration decreases up to

a certain point. Over the range above 4 km/s the amount of launch excess

speed has little effect. A speed typical of this range (8 km/s) was selected

for use in detailed analysis, thus reducing the energy parameters under

consideration to a single representative value in a manner independent of

launch vehicle capabilities.

The mission times were also quickly reduced, as shown in Fig. 2. At

times below about 950 days the selected optimization quantity, the ratio of

final mass to initial jet power, rapidly decreases. The reasons for selection

of ratios like this as optimization functions have been discussed in the open

literature (Ref. 2), and the reasons for the particular choice made during

JPL Technical Memorandum 33-611 7



the study are discussed in section V-A. An allowance was made for auxiliary

spacecraft power AP through inclusion of a AP/P. of 0. 02 divided by

efficiency.

After the parameters were reduced, the study could be focussed on the

generation of detailed data. Before this could take place, however, mission

success boundaries had to be defined.

C. Trajectory Success Boundaries

1. Hardware and science considerations. The acceptable final

state of the vehicle is strongly influenced by the science objectives. Because

of the emphasis on hardware technology, the science role was minimized

and authoritative science boundaries for the misssion were not established;

however, some arbitrary assumptions were made. For example, the closer

to perihelion that rendezvous occurs, the larger the masses that can be

delivered by a given thrust subsystem. Thus, from a hardware standpoint,

it is desirable to arrive as close to perihelion as possible. However, arri-

vals close to perihelion may leave insufficient time for scientific analysis;

and communications and Earth-based observations of the comet become

more difficult because of the effective conjunction as the comet passes

behind the Sun. Thus, science considerations most likely favor early

arrival. A preliminary investigation examined the tradeoff between early

arrival and mass delivery capability. The minimum acceptable mass per-

formance based on a worst-case analysis excluded missions intercepting the

comet earlier than 50 days prior to perihelion. This time was accepted as

a mission constraint, although no definitive statement from scientists quali-

fies it as totally acceptable.

Late arrival, to the extent allowed by science, thermal, and commu-

nication constraints, becomes a contingency option and increases the mass

delivery performance or increases the range for acceptable values for hard-

ware performance tolerances.

2. Rendezvous condition. The second element in the definition of

mission success is the rendezvous condition. The selection of a 50-day

pre-perihelion arrival point determines the position elements of the final

state vector at the comet. For purposes of this sensitivity study, an accept-

able rendezvous is taken as that which results in zero relative velocity

8 JPL Technical Memorandum 33-611



between the comet and the vehicle. This occurs when the SEP thrust sub-

system reduces the hyperbolic approach speed VHP to zero. Minimum

performance capability is associated with the VHP - 0 state. Relaxation of

the relative velocity to a slow flyby condition again represents a contingency.

The definition of the lowest acceptable relative velocity depends on the avail-

ability of authoritative science objectives and understanding of instrument

and navigation capabilities. In the interim, the exact rendezvous, VHP = 0,

is defined as the acceptable mission boundary for hardware specifications.

3. Launch period. A third major element in defining acceptable

mission boundaries is the launch period. Although the approach was to

obtain basic data which is independent of launch vehicle specifications, it is

also necessary in developing hardware tolerances to consider launch vehicle

and mission operational requirements. Flight project plans for early

launches to the outer planets nominally require a minimum of 21 days for

dual-launch missions employing the Titan launch vehicle. This requirement

can be relaxed slightly to a demand of 15 days for a single launch program.

The actual period selected will ultimately reflect the confidence of project

management in handling unforeseen problems in launch operations. To

ensure compatibility with worst-case conditions and dual-launch programs,

the mission boundary was conservatively set at 30 days.

4. Thrusting periods. Finally, a qualitative objective was set for

thrusting periods. The lack of sophisticated mission simulation programs

precluded detailed analysis to determine the maximum acceptable coast

periods. However, preliminary work showed that the best mass capability

was achieved over the most probable range of hardware operation on traj-

ectories having little or no coast periods. In present studies, coast periods

are optimally placed by the computer to maximize performance. The study

guidelines eliminated definitive statements regarding coast trajectories.

However, it was recognized that mission boundaries used in selecting hard-

ware limits should include, to the extent allowable, the minimum acceptable

conditions. For this reason, some consideration of coast periods is neces-

sary because, realistically, there should be a "reasonable" amount of coast

during the flight. Therefore, the hardware tolerance results include unde-

signated coast periods. A summary of mission boundaries is given in

Table 1.

JPL Technical Memorandum 33-611 9



V. ANALYSIS

A. Important Parameter Combinations

Because of the close interaction of hardware and trajectory over a

long period of time, more parameters must be analyzed for a low-thrust

than for a ballistic trajectory. Data must be carefully handled so that the

displays show the relationships consistent with the approach discussed in

Section IV.

The most important parameter which relates thrust-subsystem hard-

ware technology development to performance is the final mass mf (the space

vehicle mass at arrival). Using final mass as a trajectory success criteria

facilitates reallocation of mass between the thrust subsystem and the other

subsystems, including the science payload,without a priori knowledge of

power subsystem specific mass.

The force which delivers the final mass is embodied in the kinetic

energy contained in the thrust exhaust beam. Beam power is the effective

power remaining after all the elemental losses have occurred. In the equa-

tions of motion, beam power enters as the combination of the elemental

losses and the input power P(r) through the relationship

P (r) = ITSSP(r) (6)

Equation (6) is the instantaneous value of the beam power resulting from the

instantaneous values of 1 TSS and P(r). The objective of the study was to

determine the minimum acceptable value of the collective parameter 'TSS'

The value of TTSS could change during the trajectory. Because the

system may operate at nominal efficiency over only part of the trajectory,

the design limit on efficiency must be based on the entire trajectory. Thus,

the conditions for setting the minimum acceptable value were selected as

those at the poorest anticipated operating point. If the design is based on

such minimum performance limits, then nominal or superior performance

on any part of the trajectory will increase the probability of success.

Mass and beam power occur as a ratio in the equation for thrust

acceleration, Eq. (3). For determination of each trajectory, this equation

10 JPL Technical Memorandum 33-611



is integrated between initial and final values, after substitution in the

equation of motion, (4). If the other control parameters in Eq. (4), specific

impulse and pointing vector (u), are given, then a spectrum of trajectories

can be represented by the associated ratios of final mass to initial beam

power where beam power includes the value of efficiency (-TSS) at t = 0 for

a given input power (P) at t = 0. With this ratio as the objective function,

the values required for setting hardware boundaries can be combined and

displayed for each trajectory. The use of this ratio as the objective function,

instead of mass alone does not affect the trajectory optimization in the range

of beam powers considered in this study (Ref. 2).

A similar parameter combination was used to account for propellant

requirements. The instantaneous mass appearing in the vehicle accelera-

tion term of Eq. (4) includes both hardware and propellant. The objective

function ratio mf/Pj is related to the mass at any time by

m mf +m P l (7)
P.- P.

J J

Thus, the propellant specific mass with respect to reference beam power

m /P. is an integral part of the trajectory calculation; and the value at t = 0
p3

determines the allowable initial mass for each trajectory and thrust subsys-

tem beam-power combination.

The other control considered was I . The study objective included

determination of an acceptable design value, which was accomplished by

treating it as a parameter in the calculations so that its effects on the objec-

tive ratio m f/Pj could be determined.

As mentioned previously, no control was imposed through the thrust

pointing history. The trajectory computations allowed the thrust vector to

follow any pointing history which maximized the objective function. Simi-

larly, although coasting trajectories are required, no control was set on

placement or duration of the coast periods.

B. Available Contingencies

Setting limits or specifications for thrust subsystem design and opera-

tions requires understanding all available mission contingencies or controls,

such as arrival time, launch period, and coast periods. For arrival times

JPL Technical Memorandum 33-611 11



and launch periods, contingency is added to a system meeting the success

boundaries, if the mission boundary definition is altered to allow later

arrival times and shorter launch periods. Decisions about the contingency

effect of coast periods are dependent upon further study.

Other contingencies, not considered as mission success criteria, are
important as controls indirectly affecting mission success. In general, the
ability to change the controls, which define the low-thrust mission mode, is
available during three pretarget phases: (1) the initial design, (2) post-
hardware delivery, and (3) post-launch. The number of controls available
for respecification diminishes with each phase. Table 2 summarizes the
controls available during each phase, including those discussed in Section
IV-A. Criteria have been set for launch excess capability and launch period
in Section IV-B. To a lesser extent, the arrival date is also set insofar as
vehicle design mass requirements can be anticipated. The vehicle design
mass is considered to be an outside input for this study and is based on pre-
liminary configuration studies. The solar power reserve can be considered
as part of the assumed 18% array-degradation. If the degradation is not as
severe as anticipated, the reserve or excess power is available to the
thrusters. Specification of the propellant reserve is intimately connected
with the coast period design and must be such that launch can be made within
the 30-day launch period and such that additional thrusting can be provided,
if coast periods are shortened. The control, thrust pointing history, can be
tailored during the design phase for the expected reference path. If a fairly
narrow constraint is imposed because of look-angle requirements of other
subsystems, then the adjustment flexibility in the post-hardware delivery
and the post-launch phases is limited.

Table 2 shows that during the initial design and construction phase
limits can be set and tradeoffs can be made among mission and hardware
parameters to define mission success and set hardware specifications.
Once the hardware which meets those specifications is delivered, adjust-
ments can still be made should late considerations demand redefinition of
mission goals. After launch, however, thrust subsystem anomalies can only
be handled by adjusting the planned coasting periods, accepting later arrival
at the target, using the planned solar power reserve, and altering the path
with a new thrust-pointing profile.
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i. Adjustment of coast periods. As discussed previously, launch

energy can be treated independently of the launch vehicle for the mission

under consideration. The low-thrust trajectories of interest are determined

by the behavior of the initial acceleration a 0 as a function of launch excess

speed VHL. For any combination of a 0 and VHL, launch excess capability

may exist for a given launch vehicle in that it can deliver more mass at the

selected launch excess speed or more speed for a given mass. The SEP

module, sized in the design phase, will be expected to have a predicted mass

and beam power. If no limits are imposed on these characteristics, the

actual module delivered may be more massive than anticipated, while the

available beam power could be exactly as expected. The result, as seen in

Eq. (3), would be the reduction in the actual a 0 achievable by the thrust

subsystem. Without some adjustment of the trajectory, the resulting final

state would not be the desired one. If the launch vehicle selected has the

additional capability, the first alternative might be to raise the amount of

launch energy supplied to compensate for the lower-than-planned contribu-

tion of the SEP module. For the Encke rendezvous mission, this alternative

is available only over a very limited range. Figure 1 shows that if SEP

module initial acceleration goes below about 0. 36, increases in VHL have

no effect in saving mission success. Thus, VHL has limited value for elec-

tric systems and has low threshold values of initial acceleration for this

mission.

The contingency in reduction of the required launch period has a simi-

lar behavior. Figure 3 shows the behavior for several combinations of

thrust subsystems and propellant specific masses, defined in relation to

initial beam power. Final acceleration is plotted on the abscissa introducing

the reciprocal of the objective function discussed in Section V-A (mf/P ).

The plot indicates the sensitivity of the required launch period to accelera-

tion reductions. A delivered hardware system which is heavier than expected

or which has a substandard beam power, can be compensated for, within

limits, by reducing the 30-day launch period. For example, contingency

for post-hardware delivery adjustments for a thrust subsystem with a spe-

cific propellant load of 49 kg/kW and Is = 3, 000 s can be included by specify-

ing a delivered hardware mass m and beam power P., which results in a
- 4  Y j,

calculated af of 5. 44 X 10 m/s . The lowest value which could be accepted

without violation of the 30-day constraint would be 5. 36 X 10 - 4 m/s 2
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As seen in Fig. 2, the best performance returns are realized for

flight times greater than 950 days. Shorter times drastically reduce per-

formance, whereas longer times provide only modest gains. Figure 4

illustrates the mission contingency available by allowing arrival nearer

perihelion. If the actual final mass is greater than expected, or the deliv-

ered beam power less than expected, the ratio of the mass and beam power

which must be delivered, m /P , is increased. Such an increase may make

arrival at 50 days before perihelion impossible. However, the figure shows

that contingency is available for increases in mf/Pj if the acceptable mis-

sion boundary is redefined, and, furthermore, that it is possible to readjust

the propellant load specific mass ratio m /P. to the appropriate value to
P3

maintain the 50-day point. This readjustment is required to impart the

necessary energy increase through additional thrust time. The result of

this adjustment is the probable decrease in the amount of coast time avail-

able for in-flight contingency.

As noted previously, the use of coast time as a control for setting

hardware specifications was treated in this study in a qualitative manner

only because of the non-availability of an appropriate simulation program.

The approach used, illustrated in Fig. 5, typifies the basic data used for

the operational analysis of the hardware sensitivity (Section V-C). The

figure is based on the 50-day arrival time and illustrates a delivered thrust

subsystem with an Is of 3, 000 s. The auxiliary power allowance is given

as a ratio which includes the thrust subsystem efficiency 1TSS. The solid

lines represent various values of the objective function mf/Pj. Each point

is a possible trajectory for the vehicle with that specific m f/Pj. The path

flown depends on the launch date. All the displayed trajectories include

some amount of coast, except those lying on the dotted line, which denotes

the continuous thrust boundary. The paths farthest to the left of this bound-

ary have the largest amount of coast. Allowance for use of planned coasts

as contingency is accomplished by constraining the allowed launch dates with

the second dotted line denoted "launch period closed. " This line is arbi-

trarily placed to provide a reasonable allowance of coast time and to reserve

available paths for in-flight contingency use (post-launch phase). The pro-

pellant load ratio must be based on using this contingency. For example,

if the actual delivered hardware has an mf/P of 125 kg/kW, a propellant
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reserve ratio, which theoretically allows thrusting through the planned

coasts and up to the boundary, is m /P. = 47 kg/kW. Selection of this value
P j

would include some contingency for in-flight performance loss. The ration-

ale for use would be as follows: Suppose launch occurs on March 1, with

m f/P = 125 kg/kW and a propellant load ratio of m /P. = 47 kg/kW. These
J J

values are based on a 30-day launch period, plus reserve. All the available

contingency paths lie on the vertical line shown in Fig. 5. A failure reducing

the in-flight P. would instantly increase the required objective function

m f/P.. Concurrently, the propellant load ratio m /P. would increase. The

result would place the spacecraft at a contingency trajectory point on the

vertical line. The mission would still be possible provided that the new

pointing history can be met and the new value of m /P. is consistent with the

m f/Pj, i.e., sufficient propellant reserve is carried. As shown, the new

trajectory is much closer to the continuous thrust boundary, and the coast

contingency is reduced.

2. Using the solar power reserve. Solar power reserve was not

investigated in this study. The large uncertainty in the amount of solar

array degradation, which can be expected, makes meaningful analysis dif-

ficult at present. It was recognized, however, that the profile for P(r) in

Eq. (4) determines P. and therefore the number of paths available to the

hardware system. As a result, a conservative approach must be taken; and

the additional power which may be available, if the degradation or auxiliary

power requirement is not as expected, cannot be relied on in setting preflight

development specifications. Even so, a requirement less than expected will

provide contingency for in-flight adjustments even though an a priori quanti-

tative prediction appears unlikely.

3. New thrust-pointing profile. Thrust-pointing capability and its

interaction with planned contingency coast periods remains as an important

and relatively unstudied control. Only with the availability of detailed target-

ing simulation programs can the capability to alter the mission through a

changed pointing program and/or coast profile be evaluated.
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C. Hardware Sensitivity Analysis

The objective of this portion of the study was to examine the sensitivity

of mission performance to the combined subsystem parameters, 1TSS and

I s , as defined in Eqs. (1) and (2) and thereby derive the constraints which

should be imposed on the thrust subsystem hardware delivered. The

approach taken was (1) to sequentially examine each of the contingency fac-

tors available and their impact on necessary thrust subsystem performance,

starting from an assumed nominal mission and spacecraft preliminary

design, (2) to examine the effect of variations of nTSS and I on these con-

tingencies and the constraint boundaries for subsystem performance, and

(3) to determine the effect of design changes on these boundaries.

To implement this approach, the status of the spacecraft after launch

was examined. The vehicle then has a fixed propellant mass, a fixed dry

mass, a fixed solar-array area, a fixed thruster array, and a fixed beam

voltage. The variables still available are: time-of-arrival, coast arc

lengths, thrust-pointing history, and possible additional power available

from the reserve allocation for solar array degradation. Of these, only

thrust-pointing history is considered a free variable. To take advantage of

any of the others, some contingency planning must have been previously

incorporated, such as inclusion of sufficient reserve in the propellant load

to permit thrusting during designed coast arcs to compensate for lower-

than-nominal thrust subsystem performance.

The nominal space vehicle considered has the parameters given in

Table 3. In the event of subnormal thrust subsystem performance, the con-

tingency path(s) selected will depend upon the type of off-nominal behavior

experienced. The curves shown in Fig. 6 depict the ratio of the maximum

allowable final mass to initial jet-power ratio based on the selected mission

success boundaries and the corresponding ratio of required propellant mass

to initial jet power as functions of I s. For the assumed nominal space vehi-

cle, the actual values are m f/P. = 122. 5 kg/kW and m /P. = 47 kg/kWj,
which are well within the constraint boundaries.

The effect of finding, after launch, that the thrust subsystem perfor-

mance was less than anticipated was then investigated. As a starting point,
nominal values were assigned for 12 = 0, 9l = 0. 9, and cos 0 = cos a =

cos 5 1 in Eqs. (1) and (2). The effect on TSS and I was plotted as these
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parameters varied from nominal. One such case is shown in Fig. 7, where,

for l + 2r1 2 held constant at 0. 9, the effect of 12 # 0 is shown for the cases

of = 0 and T = 10 deg. (It is assumed that beam voltage and, hence, power

efficiency are fixed. ) The data from Fig. 7 was then used to determine
"actual" values of m f/P as a function of I (Fig. 8). By superimposing

the curves of Fig. 6, it can be seen that the constraint boundary is violated

for Is values less than 2910 s; i. e., the thrust subsystem performance is

too low to deliver the 1261-kg spacecraft to the destination, even with the

continuous thrusting. More significant, even at 2910 s, 536 kg of propellant

are required to deliver the 1261-kg spacecraft, i.e., 56 kg more than the

nominal amount. To provide this reserve propellant, the planned coast

periods must be reduced; i.e., if the subsystem performed nominally, it

would still require thrusting through a substantial portion of the planned

coast periods in the nominal missions. The exact effect of this was not cal-

culated because of the limitations of the trajectory program used. The

limiting case was taken as the 2910-s point, which in turn sets limits on the

allowable variations of 12 and 0 from their nominal values of zero, as shown

in Fig. 9, wherein rl2 is plotted as a function of U. For e = 0, the maximum

allowable value ofr 2 is 0. 040, decreasing to 0. 028 for = 10 deg.

The contingencies available after the delivery of the hardware, but

prior to launch, were considered next. For this case, the solar-array area,

beam voltage, spacecraft dry mass, and thruster array size are fixed, but

propellant loading is still an available variable. If thrust subsystem per-

formance is off-nominal and is discovered at this point, then propellant

loading can be changed to accommodate the lower performance, assuming

adequate tankage. The additional variable here, as opposed to the preceding

case, is the launch date. If, however, the launch period cannot be violated,

i. e., a launch window of less than 30 days is not acceptable, then the two

cases are identical, and no relaxation of the above-mentioned constraints is

possible. The significance of this case is that it can be used to redefine the

propellant load and the nominal mission in a controlled manner.

The situation changes significantly if possible variations are consid-

ered during the preliminary design phase, when such fixed hardware param-

eters as beam voltage and solar array area can still be varied. Because the

range of power levels of interest is far below the optimum value in terms of
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mass delivery capability for the launch vehicles being considered, significant

increases in propellant reserves and mass-delivery capability can be

obtained by increasing the power level. This is illustrated in Fig. 10,

wherein constraint boundaries on TSS at several values of Is have been

plotted for various power levels. These curves indicate that spacecraft dry

masses of 1261, 1281, and 1301 kg, respectively, can be delivered for 16-,

17-, and 18-kW initial power to the thrust subsystem. These mission bound-

aries inherently include a given Is versus 1 TSS relationship. They must be

updated for inclusion of variable Is systems. Also shown is a band which

covers the nominal subsystem performance over its expected operating

range. The band accounts for efficiency and Is variations with power level.

It can be deduced from this figure that, as long as the path of the thrust

subsystem operation from the nominal point A to some other point B does

not cross the appropriate mission success boundary, then success, as

measured by the delivered final mass for the selected power level, will be

achieved. Such a path could result from throttling, etc. If, however, the

path crosses the boundary, as typically shown at C, then mission failure

occurs.

The figure shows that the operational range and, consequently, the

interaction with mission success boundaries are strongly influenced by 0 and

12. For example, suppose point C is reached by some throttling function

which maintains 0 and i2 at zero. Several possibilities are then added,

which can translate C as shown. If constant Is is maintained, the dotted

path results. This path reduces the effects of B and 2, showing that a sys-

tem of 17 kW and Mf = 1281 kg is still successful at full throttling with e =

10 deg and T2 
= 0. 04. However, if constant Is is not maintained, the same

values of 0 and rs2 result in mission failure for the 17-kW system. From

this data, it can be seen that by initially designing for 18 kW, substantial

variations in the various parameters can be tolerated within the correspond-

ing mission-success boundary. Further, if the true values of e and 12 are

known, the dotted line shows that the design power level can be reduced to

17 kW; and the corresponding success boundary is not violated, provided

that the beam voltage is increased to maintain constant I

The conclusion to be drawn from this is the importance of knowing, at

the time of preliminary design, the exact values of such parameters as q2
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and 6. Unplanned values for these parameters can, however, be accommo-

dated by increasing the design-power level. Since this directly affects cost,

the cost of minimizing allowable variances in subsystem parameters must

be traded off against the cost of the additional power required to accommo-

date them.

A direct quantitative cost analysis was beyond the scope of this investi-

gation. However, off-nominal subsystem performance during the various

phases of the program has certain qualitative effects on cost. If off-nominal

performance is detected during the preliminary design phase, or if provision

for worst-case performance is made, the only cost increase is for the addi-

tional power required, which amounts to a few hundred thousand dollars.

If such performance is detected after hardware delivery and it is necessary

to change either the power level, the power conditioner, and/or the propel-

lant loading, as well as flight software and mission operations, the cost goes

up by an order of magnitude. If it is not detected until after launch and the

mission constraint boundaries are violated, the result is mission failure,

which costs on the order of one hundred million dollars. Therefore, the

most cost-effective approach is to take the most pessimistic performance

values, based on available data, for the mission design. Because the degree

of pessimism depends upon the quality of data available, the real tradeoff

is between the cost of reducing pessimism by better calibration and the cost

of increased power for overly pessimistic assumptions. This tradeoff

remains to be performed.
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Table 1. Summary of mission boundaries

Parameter Boundary

Arrival 50 days prior to comet perihelion

Velocity Rendezvous at the comet (VHP = 0)

Launch operations 30-day opportunity

Coast periods A "reasonable" amount of coast time

Thrust vector No limitations placed on thrust pointing history
pointing for this study

Table 2. Available contingencies and controls

Initial Post-
Post-Controls design hardware
launch

phase delivery

Launch excess capability X X

Launch period X X

Arrival date X X X

Coast periods X X X

Vehicle design mass X
(defueled)

Solar power reserve X X X

Propellant mass X X
(reserve)

Thrust pointing capability X X X
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Table 3. Space vehicle parameters

Parameter Nominal value

Dry mass 1261 kg

Propellant load 480 kg

Power to thrust subsystem 16 kW at 1 AU

Thrust subsystem Is 3000 s

Thrust subsystem efficiency 65% (at full power)
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PART 2. SENSITIVITY ANALYSIS

I. INTRODUCTION

In the many years of analyzing low-thrust missions, in particular

solar-electric -propulsion missions, a consistent and satisfactory method of

performing a mission design analysis has been lacking. In many of these

studies, a design point has been chosen that allowed for little if any variation

in off-nominal vehicle or flight parameters. Since there is such an intimate

relationship between the vehicle parameters and the trajectory variables such

as launch date, flight time, and departure and arrival energy, the effects of

one cannot be entirely separated from the others and all must be considered

in a realistic mission design analysis. This report attempts to present a

reasonable, although perhaps not complete, mission analysis philosophy to

be followed together with examples for an Encke comet mission for illustration.

II. MISSION PARAMETERS

In order to perform a comprehensive mission analysis, a number of

spacecraft and trajectory parameters must be considered. It is also

desirable that the trajectory data be generated independent of the launch

vehicle characteristics and independent of spacecraft parameters such as

propulsion system specific mass and thruster efficiency in order to make the

results of the analysis as general as possible. Thus trajectory data should

be generated using spacecraft thruster specific impulse and initial thrust

acceleration or spacecraft specific mass M /P as free parameters.
0J

In addition to these spacecraft parameters, there are a number of

trajectory variables which must be considered for a particular mission

although some of these may be constrained for the mission being investigated.

These trajectory parameters include launch date and arrival date or flight

time and also departure and arrival energy. Note that if the entire
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unrestricted range of possible trajectory and spacecraft parameters is to be

investigated, an inordinate number of trajectories would need to be calcu-

lated and data stored. This number of free parameters can be reduced some-

what by constraining the arrival date and arrival energy for some missions,

but trajectories would still need to be generated for possible ranges of launch

energy and launch date and for the desired values of thruster specific

impulse. In addition, sufficient values of initial thrust acceleration or space-

craft specific mass will be required in order to adequately describe mission

performance.

When a general knowledge of the mission and launch vehicle is avail-

able, it is possible to restrict the range of launch energies that need to be

investigated. For many missions such as asteroid or comet rendezvous or

slow flyby where a low (rather than optimum) powered SEP spacecraft is

assumed, the performance will be found to be relatively insensitive to launch

energy and only one or two values of launch energy need be investigated in a

preliminary mission analysis. In outer planet missions, the performance is

more sensitive to launch energy and a more detailed mission design may be

necessary.

In the analysis which follows, values of propellant specific mass M /P

were determined as functions of both spacecraft initial specific mass M /P J
and spacecraft final specific mass Mf /PJ for various values of thruster

specific impulse, launch energy, launch date and arrival date or flight time.

Note that the effective thruster jet power PJ is used rather than thruster

input power in order to divorce the analysis from specifying, a priori,

thruster characteristics. Of the various forms of presenting normalized

mission analysis data, the use of specific mass appears the easiest to com-

prehend for the individual not familiar with mission analysis terminology.

In addition, spacecraft specific mass is easily compared with propulsion sys-

tem specific mass, which is a spacecraft design parameter and not a mission

parameter.

It is not the intent of this report to present an exhaustive number of

mission design plots but rather to present typical presentations of data which

may be found useful to the user and which will indicate the potentialities of

the analysis presented in this report. It should be noted that much of the

detail given in this report is not essential for every mission design, and a
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certain amount of data editing, described in a later section, can be done by

the computer to reduce the quantity of data required for the analysis.

An example of the data generated for a particular mission, where the

launch date, flight time, arrival energy, and thruster specific impulse were

fixed, is shown in Fig. 1. In this figure values of propellant specific mass

are shown as a function of final spacecraft specific mass for various values

of launch energy (given in terms of launch hyperbolic velocity VHL). The

data for this mission, that of an Encke slow flyby, is typical of the data for

SEP asteroid or comet missions. Note that the maximum values of propel-

lant and final specific masses occur at a point corresponding to the con-

tinuous thrust limit. This limit represents the constraint beyond which it is

not possible to accomplish the mission with the specified constraints. Only

by allowing additional freedom in flight time, arrival date, or arrival energy

might it be possible to change the regime over which it is possible to

operate.

Again from Fig. 1, note that it is desirable to operate with as high a

value of final spacecraft specific mass as possible since, for a fixed final

(dry) mass, the jet power and hence spacecraft propulsion system mass is

minimized. It might appear that going to as high a value of launch energy as

possible would be preferred, since for the values shown in Fig. 1, this

results in the highest values of final specific mass. Note, however, that

there is a launch vehicle performance constraint inherent in any mission

analysis, and the operating regime (i. e. , launch energy) must be chosen so

that this constraint is not violated.

The data from Fig. 1 was used together with the launch performance of

a Titan IIIE/Centaur booster to generate the curves shown in Fig. 2. These

curves are no longer normalized since the data has been combined with the

launch vehicle capability. This data is presented in a form more commonly

seen in which final spacecraft mass is shown as a function of jet power for

the same values of launch energy as in Fig. 1. Again the continuous thrust

limit is shown together with curves of spacecraft initial specific mass M /P J .

The values of specific mass can be used together with values of final mass

and jet power to calculate the propellant mass for any point falling within the

operating regime. Alternately, curves of constant propellant mass could also

have been shown in Fig. 2, although these were not calculated for this

example.
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Note in Fig. 2 that the performance is relatively insensitive to launch

energy for values of excess velocity above 6 km/s. Thus nearly the same

values of specific mass result when using these launch energies. This intro-

duces the concept of spacecraft and propulsion system "scaling, " where the

full launch vehicle capability is not employed but rather the spacecraft is

scaled in size along a line of constant MF /P J

As an example, using the full launch vehicle capability at VHL = 7 km/s,

it is not possible to perform this mission with a jet power of 10 kW since

this point falls to the left of the continuous thrust line (Fig. 2). However, by

following a line of constant MF /P J of 126. 8 kg/kW, representing nearly the

maximum value for this launch energy, it is possible to perform the mission

with a final mass of 1268 kg, a propellant mass of 492 kg, corresponding to

a propellant specific mass of 49.2 kg/kW from Fig. 1, and an initial mass of

1760 kg. Since the launch vehicle capability at this energy is 2195 kg, a

launch performance margin of 435 kg results.

If instead the full launch vehicle capability was used at a greater launch

energy of VHL = 7. 8 km/s, a final mass of about 1280 kg would have

resulted which used 490 kg of propellant and required an initial mass of

1770 kg. Note that a net gain of 12 kg in final spacecraft mass results from

using the full launch vehicle capability as compared to a launch vehicle

reserve of 435 kg at an excess velocity of 7 km/s.

In performing a mission analysis, quite frequently it is the final mass

which is known as a function of jet power, assuming certain parameters of the

propulsion system. Thus by providing data such as in Fig. 2, the space-

craft designer can determine an operating point by using this data together

with the variation of final mass with jet power.

Such an example is shown in Fig. 3, where an example of the variation

of final mass vs jet power has been included. In this example, a spacecraft

final mass as a function of jet power of

MF = 600 + 50Pj

is assumed in order to determine a mission design point. Note that the

mission can be performed with a jet power anywhere to the right of the
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continuous thrust curve shown in Fig. 3. As higher values of jet power are

used, operation farther from the continuous thrust limit occurs (i. e. , longer

coast arcs) and departures are at lower values of launch energy.

Assuming a value of 10 kW for the desired jet power and a final mass

of 1100 kg results in a spacecraft final specific mass of 110 kg/kW. Employ-

ing the concept of scaling described previously and assuming values of launch

excess velocity of 5, 6, 7 and 8 km/s, the values of spacecraft parameters

shown in Table 1 resulted.

III. VARIATIONS OVER LAUNCH DATES

Obviously a complete mission design must include more than the point

design just described. Problems to be resolved include those of the effect of

launch date variations, the effect of variations in arrival date, and the effects

of variations in thruster specific impulse. For a preliminary mission

design, generally the last two items mentioned above can be constrained and

only variations in launch date examined.

By fixing specific impulse and arrival date, variations in launch date

could be analyzed by generating data similar to that presented in Fig. 1 for

each of the launch dates in question If this data had to be generated for each

of the values of launch energy considered for Fig. 1, a large amount of data

would be required. Since the performance in many cases is relatively insen-

sitive to launch energy for the missions being considered, it may only be

necessary to examine one or two specific values of launch energy.

An example of an Encke rendezvous mission is used for the remainder

of the examples presented in the sections following. In addition, since the

effects upon performance of launch date are being examined, the launch date

will be displayed on the abscissa of the plots shown in the following figures.

The arrival date will also be fixed at 50 days before comet perihelion so that

the flight time will vary over the range of launch dates examined.

In Figs. 4 and 5 the values of propellant specific mass are given as a

function of launch date for fixed values of spacecraft specific mass. Figure 4

presents the performance in terms of fixed values of spacecraft initial speci-

fic mass; Fig. 5 presents that data in terms of fixed values of spacecraft

final specific mass. Both figures utilize a value of launch excess velocity of
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7 km/s. The points for these figures could have been determined by

interpolating curves such as the one shown in Fig. 1. However, the values

of propellant specific mass were calculated by an interpolation from a data

bank generated previously for this mission. The details of the calculation of

the interpolated values are not important in this present discussion but are

discussed in a later section.

At this point it is assumed that the mission analyst has a good estimate

of the values of spacecraft final specific mass and is interested in determining

the propellant to be used to perform the particular mission based on covering

a particular launch period. In this context the data presented in Fig. 5 is

most useful since the user can first determine whether the mission is pos-

sible and, second, the desired range of launch dates that may be covered.

Note that the best launch date varies to some extent with the value of final

specific mass selected.

Some observations can b.e made regarding the data presented in Fig. 5.

First, there exists a maximum value of final spacecraft specific mass of

approximately 126 kg/kW at a flight time of 970 to 980 days. This point

represents the optimum design point commonly given in describing maximum

mission capability for the arrival date and specific impulse used in this

example. The use of this design point allows for no additional contingencies

in off-nominal hardware performance other than that assumed initially.

Also the effects of a delay in launch date would necessarily result in arrival,

for this mission, at a later time than the value assumed here of Tp - 50 days.

Thus in order to provide for mission contingencies of various kinds and also

to allow for propulsion system design that is not overly constrained in regard

to hardware tolerances, a design point should be chosen somewhat to the

left of the continuous thrust limit to allow for some moderate coast phases

during the nominal mission. A more detailed description of the factors

entering into the selection of an operating point is given in Part 1 of this

report and these selection criteria will not be elaborated upon further. The

remainder of Part 2 of this report presents the method whereby the mission

maps can be used to perform a mission sensitivity analysis and a description

of the programs used in support of this analysis.
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IV. USE OF MISSION MAPS FOR A SENSITIVITY ANALYSIS

The use of Figs. 4 and 5 in performing a mission sensitivity analysis

will now be described. The discussion will be limited to the one mission set

wherein rendezvous with Encke is at 50 days prior to perihelion. Note that

an additional contingency option is to allow a free arrival date. In an actual

mission this should be used as a contingency option to allow additional degrees

of freedom for unexpected thruster failure modes (Ref. 1) and for the correc-

tion of probable errors during the terminal rendezvous guidance phase. For

this analysis and the sensitivity study in Part 1, a fixed arrival date has been

assumed, however.

In order to apply the results of this analysis to an example, some

assumptions must be made regarding the spacecraft propulsion parameters.

In the examples to be presented, the values listed in Table 2 were assumed

for the nominal spacecraft design point. In this example, the combination of

a desired final mass of 1200 kg and a jet power of 10 kW yields a spacecraft

final specific mass of 120 kg/kW. In Fig. 5, the curve for a value of

MF /P J = 120 kg/kW is seen to fall well to the left of the continuous thrust

limit and will result in an acceptable mission. Arbitrarily adopting a

requirement for a 30-day launch period, a propellant specific mass of

46 kg/kW is indicated. This specific mass and a thruster jet power of 10 kW

imply a propellant requirement of 460 kg and spacecraft initial mass of

1660 kg and a spacecraft initial specific mass of 166 kg/kW.

From Fig. 4, the curve of initial specific mass m0/P J = 166 kg/kW

is used to determine the amount of propellant actually required as a function

of launch date. Since the propellant actually loaded represents a propellant

specific mass of 46 kg/kW, it is apparent that launch is prohibited on dates

requiring higher propellant specific masses than the above. From the figure,

it is seen that a minimum propellant specific mass of 45.2 kg/kW, equivalent

to a propellant mass of 452 kg, is required during the middle of the launch

window. This minimum propellant mass of 452 kg implies that a residual

propellant mass of 8 kg will remain at the end of the mission for a launch

during the middle of the launch period. This 8 kg of unused propellant can

be considered as an additional contingency option for missions launched near

the middle of the launch period.
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Note also from Figs. 4 and 5 that earlier launches are characterized

by longer coast phases since they occur farther from the continuous thrust

limit. Although not indicated, lines of constant coast time would lie approxi-

mately parallel to the continuous thrust limit curve. Since the end of the

indicated launch period occurs quite close to the continous thrust limit, it

might be necessary to terminate the launch period some days earlier to allow

a trajectory with some minimum amount of coasting.

V. PARAMETER SENSITIVITY

As mentioned previously, the use of higher launch energies provides

for a small contingency option. A mission map similar to that given in

Fig. 4 is shown in Fig. 6 for a launch energy corresponding to an excess

velocity of 8 km/s. An increase in performance of about 2.5 kg/kW is avail-

able by going to this higher launch energy. With the spacecraft parameters

given in Table 2, a propellant load of approximately 420 kg is required for a

final mass of 1200 kg. The resulting initial mass of 1620 kg slightly exceeds

the assumed injection capability of the Titan IIIE/Centaur at this launch

energy, however.

The curves given in Figs. 4 and 5 may also be used in a sensitivity

analysis to observe the effects of variations in spacecraft propulsion param-

eters that do not involve changes in thruster specific impulse. Examples of

possible contributors include variations in initial spacecraft mass, varia-

tions in thruster efficiency and variations in the reference solar array output

power. In order to examine the effects of variations in thruster specific

inpulse, a separate set of mission maps must be created using this graphical

technique.

An example of the effect of a variation in reference solar array power

is presented in Table 3 and Fig. 7. Here the effect of an increase of 5 and

10% in solar array output power is shown. This particular variation is

important since it indicates the sensitivity of performance to assumed values

of solar array degradation that are used in preliminary mission performance

estimates.

This example has been calculated assuming that the thrust system can

handle the additional solar array output power. From Fig. 4 an increase in
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performance (in terms of final mass) of 5 and 10% is possible by using the

same design values as before (MF/P J = 120 kg/kW). This increase in per-

formance corresponds to an increase in final mass capability of around 60

and 120 kg, respectively. If, on the other hand, the initial mass is con-

strained to a value of 1660 kg as in the example given in Table 2, the pro-

pellant requirements shown in Fig. 7 result. Note that the required pro-

pellant is less than that required for the example using the nominal power for

a particular launch date even though the propellant mass flow rate is greater

with the increased solar array power. That the propellant requirements are

less reflects the presence of the longer coast phases which result using the

increased thruster power, which more than compensates for the increased

rate of usage of propellant.

If the propellant loading is kept the same, the effect is to increase the

apparent launch period, or if the launch period is fixed, the effective residual

propellant is increased over the launch period. Again, the extra propellant

may be used as a contingency option to reduce flight time (i.e., earlier

arrival) or to allow for additional propulsion capability after encounter. Note

that the effect of the additional power available to the propulsion system

results in operation further from the continuous thrust limit and hence in

trajectories with longer coast phases.

In order to examine the effects of off-nominal specific impulse varia-

tions, additional mission maps would need to be generated. Figure 8 pre-

sents several curves (not the entire mission maps) for three values of speci-

fic impulse. The propellant mass requirements are given for a fixed initial

mass of 1660 kg as in the nominal example. Variations of ±200 s in specific

impulse were considered, corresponding to a specific impulse of 2800 and

3200 s. A different value of thruster efficiency was assumed for each example

of specific impulse, reflecting the change in thruster efficiency with specific

impulse. The nominal propellant load is also indicated in Fig. 8 as the hori-

zontal dashed line at a propellant loading of 460 kg.

Note from Fig. 8 that the propellant required corresponding to a

2800-s specific impulse is greater than for the nominal value of 3000 s and

results in a very short launch period of 5 to 10 days. If it is known, a priori,

that the specific impulse is low, additional propellant could be loaded so as
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to increase the launch period. Operation is further from the continuous

thrust limit for low values of specific impulse, and the coast phases will be

longer than for the nominal example.

Although it might be expected that a higher value of specific impulse

would result in a wider launch period, such does not occur since the con-

tinuous thrust limit has moved to an earlier launch date and has the effect of

terminating the launch period prematurely. Note from Fig. 8 that the opera-

tion at lower values of specific impulse is preferred (at least for this exam-

ple), particularly so if the value of specific impulse is known before liftoff

and additional propellant loaded.

VI. THE USE OF GRAPHIC TECHNIQUES

The preceding sections have discussed the use of graphical techniques

in performing a preliminary mission design and performance sensitivity

analysis. While the methods and presentation of data are generally straight-

forward, nevertheless the generation of the many mission maps is time-

consuming, even when performed by computer techniques. Furthermore, the

mission maps are difficult to interpret if values must be interpolated between

curves.

With these considerations in mind, the following multiple-step approach

is taken. First, parametric data is generated over the expected range of

flight times, launch dates, and launch and arrival energies for the mission

being considered. This "raw" data is stored in a data file by the computer or

alternately output on punched cards for more permanent retention. This data

is considered normalized or parametric in the sense that it does not include

a postulated launch vehicle, power, or thruster parameters. The only space-

craft parameter entering into this data is the relative solar array power pro-

file. The parametric data is then used with the following iterative procedure

to determine an acceptable mission set of spacecraft parameters and to

analyze the effects of parameters variations on the mission:

(1) A nominal set of mission parameters, i.e., launch energy,

flight time, and arrival energy, is chosen to be examined.
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(2) A nominal set of hardware parameters is selected, including

thruster input power, specific impulse, efficiency, and desired

final spacecraft mass.

(3) With the use of either an available set of mission maps or the

postprocessor program to be described later, the particular set

of mission parameters is investigated to determine its suitability.

If the selected set of hardware parameters is not suitable (e.g.,

if the mission is not possible), another mission set is selected or

another set of hardware parameters is investigated.

(4) An acceptable set of parameters having been found, the propellant

mass is determined as a function of launch date for the value of

final spacecraft mass selected.

(5) A propellant load is determined based upon covering a speci-

fied launch period and including additional propellant reserves if

desired. The desired launch period should be specified before-

hand as an input quantity, and would typically be around 20-30 days.

(6) An initial spacecraft mass is determined based upon the desired

propellant loading, and the launch vehicle injection capability is

checked to determine if it is sufficient at the specified launch

energy. If the injection capability is insufficient, either the

spacecraft parameters must be changed or a lower launch energy

employed.

(7) The initial mass and propellant loading having been specified, the

actual propellant required to perform the mission is determined

as a function of launch date. Based upon the amount of propellant

loaded, the actual launch period is determined and the propellant

reserve calculated as a function of launch date.

(8) With an acceptable nominal mission set and hardware set of

parameters determined, the effects of off-nominal performance

can be investigated.
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VII. DESCRIPTION OF CHEBYTOP

Previously, no mention of computer programs used to generate this

mission analysis data has been made. Almost any low-thrust mission analy-

sis program can be used to generate the data for the mission maps presented

previously. However, a low-thrust mission analysis program called

CHEBYTOP developed by The Boeing Company (Ref. 2) possesses some

features that make it particularly attractive in analyzing the type of problem

being considered herein.

A detailed description of CHEBYTOP may be found in Ref. 2. However,

in essence, CHEBYTOP is a two-part program that solves the unconstrained-

thrust, power-limited, low-thrust trajectory by means of a series of patched

Chebychev polynomials. The coefficients of these polynomials are selected

so as to minimize the trajectory specific power and to satisfy the particular

trajectory constraints. These unconstrained thrust trajectories are propul-

sion system and launch vehicle independent and only depend upon the initial

and final state, vector flight time, and launch and arrival energy.

CHEBYTOP generates constrained thrust (constant specific impulse)

trajectories by a scheme which uses the unconstrained thrust acceleration

profile as a basis for approximating the multiple coast constrained thrust

performance. The accuracy of the constrained thrust solution depends upon

the paths of the unconstrained and constrained thrust trajectories being

close to one another. For a preliminary mission design the accuracy in

calculating performance for the constrained thrust solution is generally

better than 310 as compared with a more exact integrated trajectory. The

solution of the constrained thrust trajectory requires the input of various

spacecraft parameters such as thruster specific impulse, thruster efficiency,

thruster input power, and spacecraft initial mass.

The separation in CHEBYTOP between the unconstrained and con-

strained thrust solutions suggests that it should be possible to save or store

the unconstrained thrust data which is required to generate the constrained

thrust solution and perform our analysis at a later time using this data exclu-

sively. This method appears quite attractive since by far the greatest amount

of computer time is spent in generating the unconstrained thrust trajectory.
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Initially, a set of unconstrained thrust trajectories is computed which

covers the range of launch and arrival dates and energies to be considered.

A separate data file is saved from each trajectory and stored in a data file

by the computer or punched on cards for more permanent retention. Since

CHEBYTOP has been written as a group of subroutines, it is necessary only

to make a call to the unconstrained thrust subroutine followed by one call to

the constrained thrust subroutine to generate the data to be saved. The data

being saved contains several variables identifying the particular trajectory

and an array of the unconstrained thrust acceleration magnitude computed at

equal values of regularized time. If the propulsion time is desired, an addi-

tional data array which relates actual time to regularized time would also

need to be saved. This data array is not now saved. However, it would be

a simple matter to store it in addition to the acceleration data.

VIII. DESCRIPTION OF POSTPROCESSOR PROGRAM

A breadboard program has been written identified by the acronym

CMAP (Chebytop Mission Analysis Program) that processes the data pre-

viously stored from CHEBYTOP. CMAP makes use of a number of sub-

routines used for the CHEBYTOP constrained thrust solution and has been

designed to accept data files from either version of CHEBYTOP, although

at present the subroutines used in CMAP utilize only those from CHEBYTOP I

because of several problems encountered when the constrained thrust system

for CHEBYTOP II was used.

The CMAP program accepts as input either data files or punched cards.

The program will read the data previously generated and store certain vari-

ables identifying the stored data in the computer memory and print out a

tabulation of the launch dates, arrival dates or flight times, launch energy

and arrival energy. The data records containing the acceleration history

are stored in temporary Fortran data files in order to decrease the core

storage or memory requirements for the program.

Values of launch and arrival energy are input together with either flight

time or arrival date, depending upon the options selected. The particular

data records for each launch date are retrieved from file storage and stored

in memory. If the input data does not correspond to the identification data
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stored in the tables, an error condition exists and the program returns for

another set of input data.

In addition, values of initial or final mass, thruster specific impulse,

efficiency, and thruster input power are also input. CMAP sets up different

logic, depending upon whether the initial or final mass are input. The pro-

gram will calculate the propellant required for each launch date being con-

sidered. If the given spacecraft parameters do not result in an acceptable

mission for some of the launch dates, the launch dates are interpolated to

determine that launch date that corresponds to a continuous thrust trajectory.

An initial propellant loading can also be included as an input quantity

and the launch period corresponding to this propellant loading calculated.

CMAP will indicate in this case whether the propellant load is sufficient for

the example being considered, whether the launch period limits are outside

the range of launch dates being considered, and whether the launch period

terminates at the continuous thrust limit. CMAP will also calculate and

print values of regularized (not real) propulsion time as a function of launch

date.

The regularized time T b and actual time T are related by

dT - P(R) dT
b  P

0

where P(R) represents the variation of solar array power with solar dis-

tance. Note that if a constant power (i.e., nuclear electric) case is being

considered, the regularized time and actual time are the same. In order to

calculate the actual propulsion time, an additional array relating regularized

to actual time would be required. This was not considered necessary for the

present study, however, since the estimates of true propulsion time can have

relatively large errors as calculated by CHEBYTOP, even though the regular-

ized propulsion time is calculated accurately.

A flow diagram which describes the operation of CMAP is shown in

Fig. 9. The CHEBYTOP constrained thrust subroutines used in CMAP were

modified slightly so as to be able to calculate the continuous thrust trajectories

correctly. There are several possible problems inherent in both CHEBYTOP

and CMAP. The acceleration profile saved from CHEBYTOP can be quite
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irregular or noisy in certain cases because of the method of interpolating the

data in CHEBYTOP. This irregularity results in convergence problems when

going to the constrained thrust solution. The effects of the noisy data are

manifested in many cases in multiple coast phases when only one should be

present. A potential problem with CMAP occurs when the final mass is

input, since the problem can be double-valued in some cases. This could

occur since there may be two values of propellant mass that will result in the

desired value of final mass. It has not been observed in the examples of the

SEP Encke flyby or rendezvous missions, however, but has been observed

in other examples, primarily constant power nuclear-electric missions.

IX. THE USE OF CMAP AS A MISSION ANALYSIS TOOL

This program has proved to be a valuable tool in analyzing the effects

of parameter variations on mission performance and in performing an initial

mission design analysis. The accuracy of CMAP is, of course, comparable

with that of CHEBYTOP, and the types of mission constraints are limited to

those that can be handled by CHEBYTOP. The most important requirement

for CMAP, and also, incidently, CHEBYTOP, is for a smoother acceleration

profile to be used for the constrained thrust solution.
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Table 1. Performance variation with launch energy

VHL, km/s Mp/PJ Mp, kg M 0 , kg AMLV, kg

(Fig. 1)

5 43.0 430 1530 1918

6 37.0 370 1470 1352

7 32.8 328 1428 767

8 29.8 298 1398 193

AMLv = excess launch vehicle capability.

M F = 1100 kg; MF /PJ = 110 kg/kW.

Table 2. Encke rendezvous, 1980

Desired final mass 1200 kg

Thruster input power 16 kW

Spacecraft power 0.32 kW

Specific impulse 3000 s

Thruster efficiency 0.625

Thruster jet power 10 kW

Final mass/jet power 120 kg/kW

For 30-day launch window

Propellant mass 460 kg

Initial mass 1660 kg

Minimum Mp 452 kg
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Table 3. Effect of greater than nominal solar array power

PE 16.8 kW 17.6 kW

A PE/E 5% 10%

Launch window 48 days 56 days

Propellant reserve 20 kg 35 kg
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